

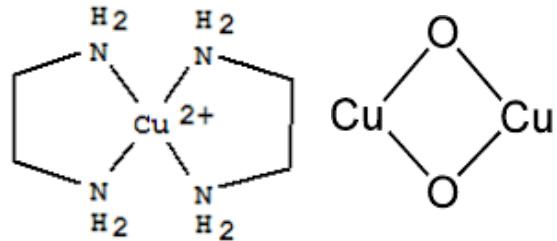
THE PERIODIC TABLE

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58 140.12 Cerium	59 140.91 Praseodymium	60 144.24 Neodymium	61 (145) Neptunium	62 180.36 Samarium	63 152.97 Europium	64 151.25 Gadolinium	65 158.93 Terbium	66 182.50 Dysprosium	67 164.93 Holmium	68 187.26 Erbium	69 188.10 Thulium	70 173.04 Ytterbium	71 174.97 Lutetium
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90 232.04 Thorium	91 231.04 Protactinium	92 233.03 Uranium	93 237.06 Neptunium	94 (240) Plutonium	95 243.96 Americium	96 (247) Curium	97 (249) Berkelium	98 (251) Californium	99 252.06 Eschbium	100 257.16 Fermium	101 (257) Mendelevium	102 258.10 Nobelium	103 259.11 Lawrencium

Week 3

Naming according to IUPAC

1. The name of the cation comes before the anion. $[\text{Ag}(\text{NH}_3)_2]\text{Cl}$ or $\text{K}_3[\text{Fe}(\text{CN})_6]$
1st 2nd 1st 2nd


2. The names of the ligands in the inner coordination sphere come before the metal.

$[\text{Ag}(\text{NH}_3)_2]\text{Cl}$ or $\text{K}_3[\text{Fe}(\text{CN})_6]$
Ammine then silver Pottassium, cyano, then iron

bis(ethylenediamine)copper...
bis(μ -oxo)copper....

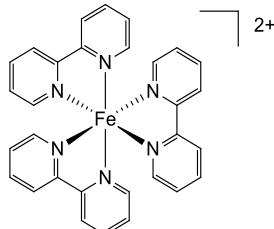
3. Ligand or ion names are placed in alphabetical order.

$[\text{Ag}(\text{NH}_3)(\text{H}_2\text{O})]\text{Cl}$ ammine is before aqua
 $\text{NaK}_2[\text{Fe}(\text{CN})_6]$ potassium is before sodium

4. The number of species of one kind is often given by two sets of prefixes.

Always use the 1st set of prefixes unless:

- If the name includes already the first set of prefixes
- If the ligand is polydentate
- If there are multiple bridges of the same kind

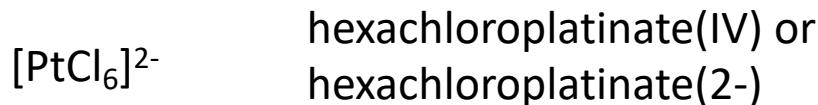

Note: 2nd set of prefixes is used in conjunction with parenthesis for the name of the ligand.

Number of ligands	First set of prefixes	Second set of prefixes
2	di	bis
3	tri	tris
4	tetra	tetrakis
5	penta	pentakis
6	hexa	hexakis
7	hepta	heptakis

Naming according to IUPAC

5. There are two possibilities for designating the charge or the oxidation state.

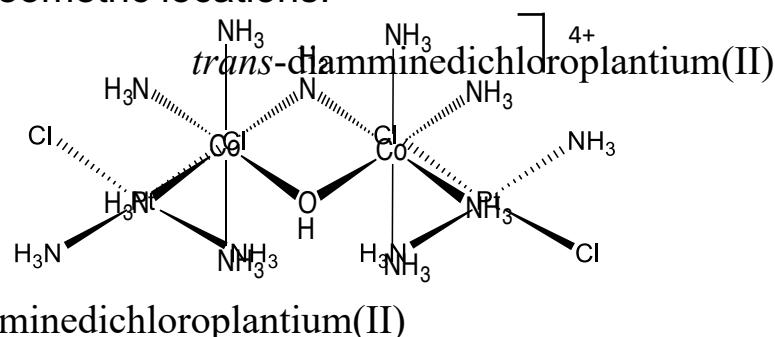
(a) Put the **oxidation state** as a **Roman numeral** in parenthesis after the name of the metal.
(b) Put the **charge of the coordination sphere** in parenthesis after the name of the metal



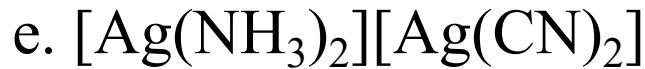
= tris(bipyridine)iron(II)
= tris(bipyridine)iron (2+)

Dichlorobis(ethylenediamine) cobalt(III)
Dichlorobis(ethylenediamine) cobalt(1+)

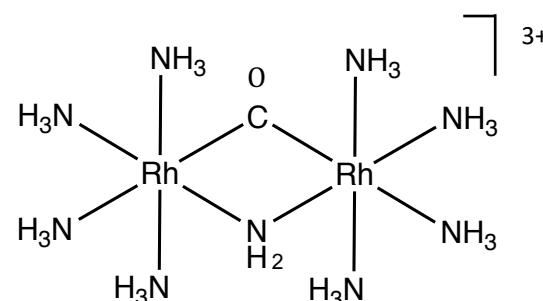
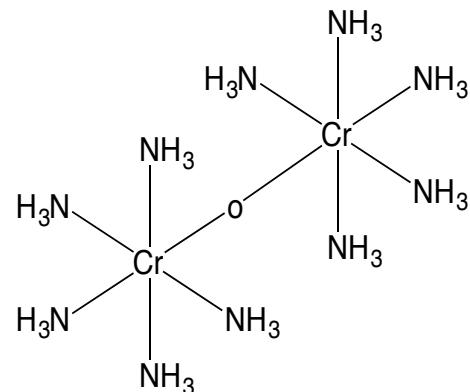
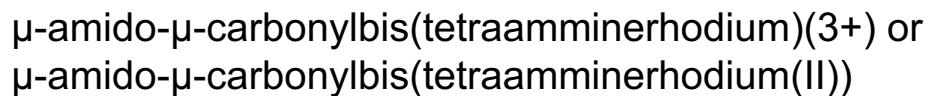
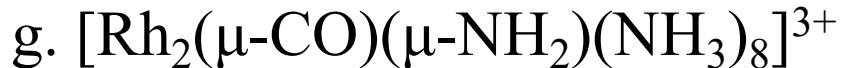
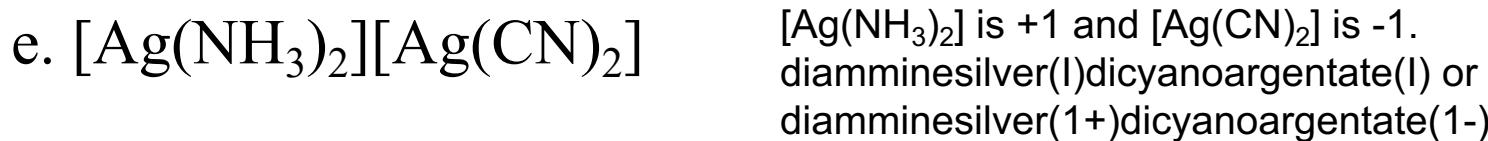
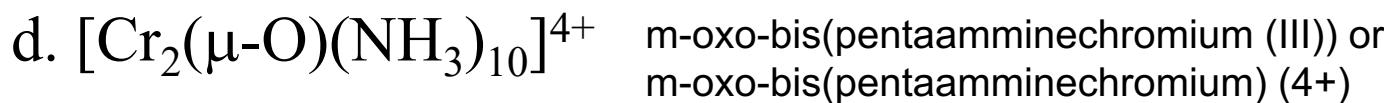
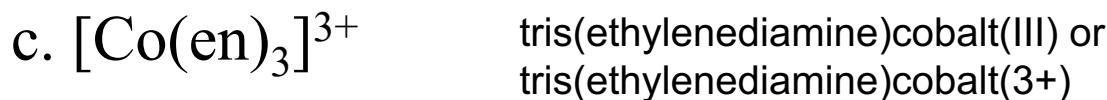
6. If complex charge is negative, the suffix **-ate** is added to the name of the metal name.


metal	changed to
cobalt	cobaltate
aluminum	aluminate
chromium	chromate
vanadium	vanadate
copper	cuprate
iron	ferrate
platinum	platinate
silver	argentate
gold	Aurate

7. Prefix *cis*- and *trans*- designate adjacent and opposite geometric locations.

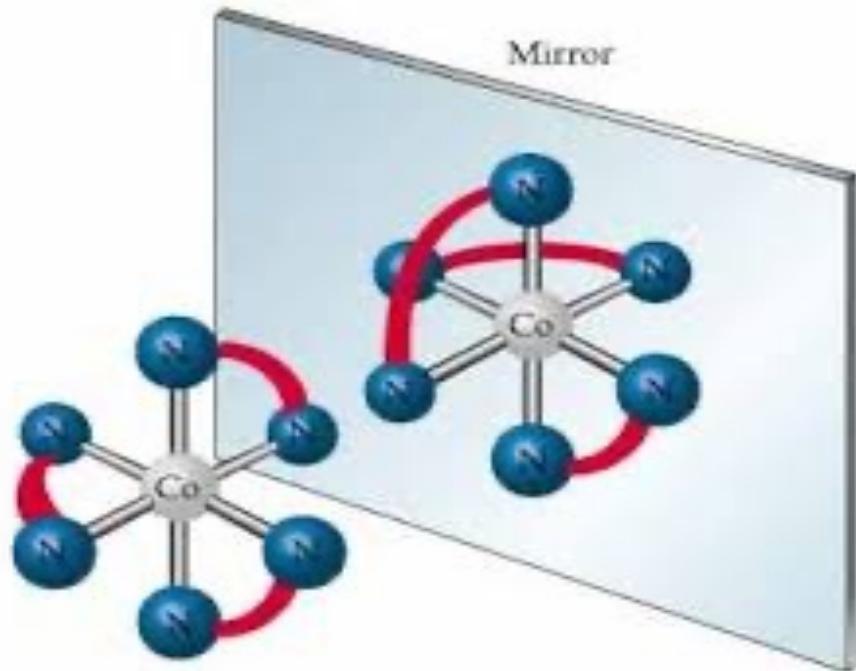

fac- and *mer*- or Λ or Δ

8. Bridging ligands between metal ions have the prefix " μ "

μ -amido- μ -hydroxobis(tetraamminecobalt)(4+)

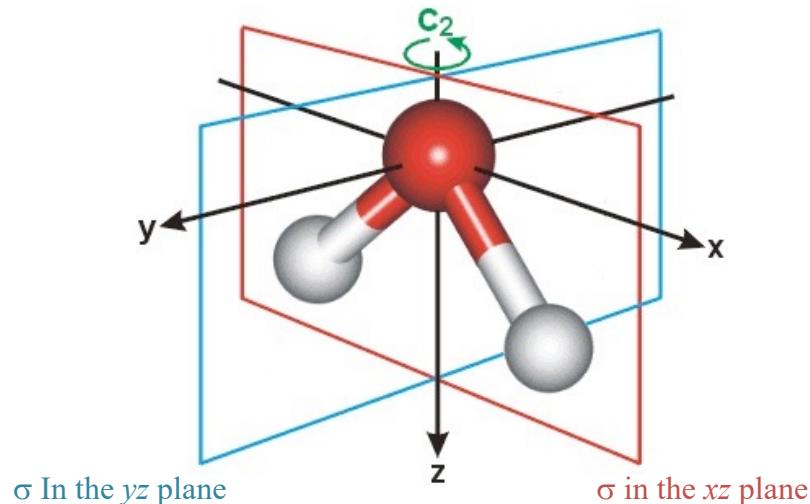
Name these compounds...


Name these compounds...

Symmetry Elements

Symmetry element	Symmetry operation	Symbol
axis of rotation	rotation by $360^\circ/n$	C_n
mirror plane	reflection	σ
center of inversion*	inversion	i
improper axis of rotation	rotation of $360^\circ/n$ followed by mirror reflection that is perpendicular to the rotational axis.	S_n

*For S_1 and $S_2 = \sigma$ and i , respectively.



Symmetry Elements

Symmetry element	Symmetry operation	Symbol
axis of rotation	rotation by $360^\circ/n$	C_n
mirror plane	reflection	σ
center of inversion*	inversion	i
improper axis of rotation	rotation of $360^\circ/n$ followed by mirror reflection that is perpendicular to the rotational axis.	S_n

*For S_1 and $S_2 = \sigma$ and i , respectively.

Symmetry elements of water, which has a C_2 axis of rotation and two mirror planes, σ

